Evapotranspiration, often shortened to ET, is the process of transferring moisture from the earth into the atmosphere. Put simply, evaporation occurs when water vapor leaves the soil or a plant’s surface. Transpiration involves the passage of water through a plant, from its roots through its vascular system. The sum of evaporation and transpiration is evapotranspiration (ET).

Why is Evapotranspiration Important?
Water continuously moves between the oceans, sky and land. This ongoing circulation is fundamental to the availability of water on the planet and therefore to life on earth. ET is a key process within this cycle, and is responsible for 15% of the atmosphere’s water vapor. Without it, clouds couldn’t form and rain wouldn’t fall.

Why Adopt an Irrigation System Based on ET?
If we can accurately determine how much water has entered and left plants and surrounding soil, we can determine how much water a landscape needs at any point in time. When plants look unhealthy, the common reaction is to turn on the spigot. In reality, most landscape surrounding our buildings, parks and schools is overwatered.

Overwatering is the cause of the vast majority of issues experienced by plants and trees, particularly disease. By better managing the amount of water used for landscape irrigation, you won’t have to replace your plant material or hardscape (retaining walls, wooden fences, masonry, etc.) as often. Overwatering also reduces the life span of your asphalt and paved surfaces. It can cause soil consolidation, a leading cause of concrete slab foundation problems and failures. Finally, irrigation systems with automated cycle and soak capabilities reduce runoff because the soil has an opportunity to absorb the water. ET provides an accurate calculation of the amount of water needed for specific weather and a specific set of plants, eliminating waste, and offering direct savings on water and indirect savings on plant and hardscape expenses.

Calculating ET
There are numerous factors that impact the rate of evapotranspiration, including temperature, location, soil type, wind, solar radiation and humidity. Every location or site has different water needs every day. Using remote weather stations or weather stations with limited sensors or zip codes to define microclimates and set watering schedules, as many irrigation solutions do, will not yield good results.

There are numerous ways to calculate ET to determine watering needs. The easiest way involves averaging ET values from the two nearest weather stations. The resulting data, however, can be misleading. Microclimates even a few kilometers apart can produce substantially different values. Some property owners and managers purchase their own mini weather stations, but they tend to require frequent calibration and maintenance and are notoriously unreliable.

A relatively simple ET calculation method called Blaney-Criddle is popular, but tends to be inaccurate in areas with higher humidity. The Makkink method requires weather station calibration for each specific location. Another frequently used method, called Hargreaves, uses a single sensor. Results can be up to 60% different than other methods, calling their outcomes into serious question.

In an effort to determine the most accurate way to calculate ET and standardize on a single method, the Irrigation Association commissioned an independent study from the American Society of Civil Engineers (ASCE). After extensive research, it was determined that the ASCE Standardized Penman-Monteith was the winner. Unfortunately, calculations using Penman-Monteith are problematic because it takes so many factors into account.

How HydroPoint Puts ET Calculations to Work
Valuing accuracy and precision, HydroPoint set out to incorporate Penman-Monteith calculations into its proprietary weather model. With nearly 8 million one-square-kilometer grids across the continental U.S., however, modeling the equation with four input parameters is exceedingly complicated.

To manage the complexity, HydroPoint uses highly sophisticated software running on a high performance computing cluster in HydroPoint’s climate center. Every day the climate center downloads:

  • 8 million real-time data points via satellite and internet from the National Oceanic and Atmospheric Administration (NOAA) and local mesonets
  • Surface observations collected hourly from ground weather stations, ocean buoys and weather balloons around the world
  • Global satellite-imaging data every 15 minutes
  • Hourly Doppler radar data for the U.S.

In addition, the model uses 256 categories of local ground information such as topography, soil, vegetation and land use. Redundant calculations are made, and the resulting data is inserted into databases using proprietary code.

Ground weather readings can be wrong. So just how accurate is the data? To ensure accuracy, HydroPoint wrote a heuristic algorithm that crawls through the incoming data day in and day out, weeding out anomalous readings. Data is disqualified, for instance, if there are big swings in temperature or humidity readings from one hour to the next at the same weather station.

To translate ET values into an irrigation schedule usable by a controller, HydroPoint developed scheduling software that factors in ET plus easy to enter zone specific parameters entered by someone familiar with the site – from plant and soil type to sprinkler-head model. In addition, HydroPoint analyzes Doppler radar data, and essentially creating an on-off rain switch. The moisture depletion rate is calculated by subtracting the estimated daily ET loss for each square on the grid, thus determining how long the irrigation pause should last—information that is sent to HydroPoint controllers.

The result is both historical and real-time site-specific weather and accurate ET values to drive irrigation for any location, down to a square kilometer, without the need for weather stations or sensors on-site.

WT_universe_9 copy

The HydroPoint Advantage
HydroPoint, the long-time leader in smart water management, uses ET values to determine the right amount of water for a specific landscape environment. We’re the only water management solution to use the four-parameter, international calculation standard, Penman-Monteith.

How does that make HydroPoint different?

  • Unparalleled accuracy. HydroPoint ET calculations have been independently proven to be within 2% of an actual on-site weather station.
  • Precision results to each specific location. The results are precise to within one square kilometer, ensuring you’re not watering your landscape based on a remote or sensor limited weather station.
  • Timely. HydroPoint transmits daily ET data to control irrigation at each individual controller.
  • Reliable. By using redundant calculations and relying on numerous data points and weather stations, there is no single point of failure. HydroPoint irrigation systems do not rely on external or add-on devices that could fail, such as weather receivers, soil moisture probes and temperature sensors.
  • Centralized control. ET values and local site conditions provided by HydroPoint’s climate center drive irrigation scheduling engines. You get automated, centralized control that can be used from a desktop or on-the-go from a mobile device.
  • Easy to deploy and maintenance free. HydroPoint solutions are simple to deploy and require no end-user calibration, keeping your overall cost of ownership low.